Carbon (and Environmental) Footprint of Wind and Solar Resources

Michael H. Young, Gürcan Gülen, Atta Rehman, Jani Das Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin

The Energy Council 2023 Federal Energy and Environmental Matters Conference Washington DC June 24, 2023

Motivation for Studying Energy Systems

• We are motivated to understand tradeoffs between society's goals of mitigating climate change, preserving biodiversity and ecosystems, and providing reliable and affordable energy to a global community of 8 billion people.

Approach:

- Data-driven, science-based, interdisciplinary research into:
 - Life-cycle environmental and cost assessments of the energy transition
 - Global supply chain of critical materials
 - Future expansion of capacity and what supports it

Current Generation Options Being Compared

Base Case Functional Unit: 500 MW capacity CCGT, generating 3 TWh/yr of electricity

Assumptions Underlying Analyses

	Combined Cycle Gas Turbine	Wind	Solar	Wind + Battery Storage	Solar + Battery Storage
Characteristics of generation/storage units	500 MW capacity 68% capacity factor	912 MW capacity, 304 turbines, each 3 MW in size, 38% capacity factor	1350 MW capacity, 3 million panels, 450kW each, 34% capacity factor	Wind generation + 500 MW capacity battery, LFP chemistry (to increase capacity factor)	Solar generation + 500 MW capacity battery, LFP chemistry (to increase capacity factor)
Characteristics of fuel cycle and replenishment	Gas (or non- associated gas) wells replaced annually per decline curve	Routine maintenance	0.5% degradation rate, facility oversized at construction	Full battery replacement every 10 years	Full battery replacement every 10 years
Characteristics of supply chain	Fuel and facility domestically sourced	28% components sourced outside US, with mix of land and sea transport routes	70% components sourced outside US (mix from SE Asia, China, and Europe)	Wind turbines + global mix of material sourcing and processing, manufactured in US	Solar panels + global mix of material sourcing and processing, manufactured in US

Life Cycle Assessment (LCA) Methodology

8

Generalized System Boundaries – Cradle-to-Gate/Grave

Not accounted for in this talk

Life Cycle System Boundaries of PV-Wind-Battery System

We Consider Impact Categories that are Global ...

Images: Shutterstock, https://eplca.jrc.ec.europa.eu/

... And Other Impact Categories that are Local

GLOBAL WARMING POTENTIAL

ACIDIFICATION

LAND USE

RESOURCE

DEPLETION

WATER CONSUMPTION & CONTAMINATION

FRESHWATER,

TERRESTRIAL

BIODIVERSITY AND ECOSYSTEM SERVICES

Images: Shutterstock, https://eplca.jrc.ec.europa.eu/

Area of Interest for Electricity Generation

- 33 country region centered on Midland basin, spanning over 10.5 million hectares
- West Texas used in this LCA study
- Location chosen given substantial knowledge of O&G, wind and solar resources, as well as T&D infrastructure
- Study approach ensures transportability of approach to any other location or region

Total Life-Cycle CO₂eq and How it Changes With Time

Zooming into First 5-year Life-Cycle of CO₂eq and How it Changes With Time

Total Water Consumption at Different Locations and Life Cycle Phases

GEOLOGY

Total Life-Cycle CO₂eq and Water Consumption Potential

Total Life-Cycle Particulate Matter (PM2.5eq) Formation

How Do Technologies Compare Along Life Cycle Stages?

What Did We Find?

- Environmental impacts across full life cycle of different generation options vary by over time and location:
 - CO₂ emissions are global in nature, many others are local in nature
- CO₂ and other impacts from build-out of wind, solar and batteries are front-loaded
- Faster adoption to low-carbon energy leads to higher near-term CO₂ emissions, when manufacturing of infrastructure is fossil-fueled
- In many cases, emissions from material processing for wind, solar and batteries exceed those from CCGT generation throughout facility life

How the Results Will Be Incorporated into Future Studies

Combine individual systems into a grid model

Develop estimates of electricity costs to consumers

Final Take-Aways

- Grid mix in industry-heavy locations matters ... a lot
- Important to broaden consideration to account for local impacts and to local communities
- CO₂ emissions is only part of the story
- Consider actual costs to consumers, including externalities

Thank you for your interest!!

Acknowledgements:

Funding made possible by **CEO IA members,** Texas STARR Program, the Jackson School of Geosciences at UT Austin, Scott Tinker (senior advisor to CEO)

Contact: michael.young@beg.utexas.edu

