The Current Energy Transition

Hydrogen, Energy Storage, CCUS, Critical Minerals

Franek Hasiuk, PhD

Summary

- Current energy transition is one of many the industry has (and will) experience
- Its major parts are:
 - Hydrogen Economy
 - Energy Storage
 - Carbon Capture/Use/Storage
 - Critical Minerals
- It's not scary, it's opportunity!

Kansas Geological Survey

- "A research and service unit of the University of Kansas"
- ~120 employees + students
- Operates under statute to investigate resources of Kansas
- Provides scientific research and remains neutral on policy
- Our research must be relevant to Kansas
 - Groundwater/surface water
 - Economic geology (Oil, Gas, Helium, Injection, Sand/Gravel, Limestone, Salt, Coal, Lead-Zinc)
 - Carbon capture/use/storage; Energy Storage
 - Geological mapping and geographic data
 - Induced seismicity and shallow geophysics

Franek Hasiuk, PhD

- Education:
 - PhD, MS, University of Michigan
 - BS Geology / BA Classics, U Iowa
- Work experience:
 - Kansas Geological Survey (3.5y)
 - Iowa State University (6y)
 - ExxonMobil (4y)
 - U Iowa Water Plant (4 y)
- Expertise:
 - Traditional and Transitional Energy
 - Limestones
 - 3D Printing

Fuel diversity has changed over time

2020 EIA Actual

ExxonMobil Energy Outlook 2009

50% Growth in Energy Usage by 2050

Banning combustion engines

Early retirement of coal assets

BUSINESS

Zimmer coal-fired plant near Cincinnati to close five years early

Mark Williams The Columbus Dispatch

Published 1:03 p.m. ET Jul. 21, 2021

View Comments

Evergy to close coal-fired power plant just outside of Lawrence

What we don't want to happen

~1900, New York City, drowning in manure

Transitions in History—Lighting

"Grand Ball Given by the Whales..."

"... in honor of the discovery of the Oil Wells in Pennsylvania."

VANITY FAIR.

[APRIL 20, 1861.

Energy Transition Has Key Technologies

Hydrogen Economy		Energy Storage		Carbon Capture, Use, and Storage		Critical Minerals
•	Can be burned with natural gas	 Manages variable production of power from 	•	Gets CO ₂ out of the atmosphere	•	Required for high tech manufacturing (e.g., solar panels,
•	Transport fuel	renewables and fossil generators	•	Prolongs investments in		wind turbines, electronics, screens)
J	industrial uses	Network benefits		plants	•	Complex to refine

Current Fuel Cycle

Emits carbon to the atmosphere 🔛

Carbon Capture System

Works for large sources of carbon emissions, like industrial facilities 🙂

The Hydrogen System

Works for

Large sources (like industrial facilities) 💮 Small sources (like cars) 🕒

AND we can do other stuff with the hydrogen!

Hydrogen Economy

Hydrogen Production Today

Currently 99% of 10 MMT in the U.S. supplied by fossil fuels – least cost

- 96% by SMR
- 3% by gasification
- 1% by electrolysis

70 MMT generated globally

- 76% by SMR
- 22% by gasification
- 2% by electrolysis

Small fraction includes CCUS Economics dominates generation mix

The Hydrogen Economy

Coal	Black
Lignite	Brown
Fossil Fuel with Carbon Emission	Gray
Fossil Fuel with Carbon Capture	Blue
Renewables	Green
Nuclear	Pink

Linde Runs Hydrogen Network in Texas

- Salt cavern storage with 40 million m³ working capacity (1.4 Bcf)
- 350-mile pipeline from Texas City, TX, to Lake Charles, LA
- Connects 50 customers
- 600 mscf/d rate

Gulf Coast Hydrogen Pipeline

Legislative issues around Hydrogen

- Permitting underground storage
 - Caverns
 - Pore Space

• Water usage

Carbon storage issues

Energy Storage

We already do oil & coal storage

US Strategic Petroleum Reserve

Coal piles at coal power plants

We already do natural gas storage

Energy storage solves problems

...associated with variable power production

Pumped Storage Hydropower

Compressed Air Energy Storage (CAES)

CAES operating for 30+ years in USA

McIntosh, Alabama, since 1991

Huntorf, Germany, since 1978

We already do storage of refined products

368 active wells (~750 total)73 million barrels storage

Salt Storage is broadly available

Legislative issues around Energy Storage

- Permitting/zoning storage
 - Cavern (underground)
 - Pore space (underground)
 - Pumped hydro (surface)

• Monitoring for leakage, subsidence

• Effects on power rates

Carbon Capture/Use/Storage

Carbon Capture/Use/Storage

AAPG Explorer

CO₂ can be captured from sources

Power Plants

Cement Plants

CO₂ Sources in Lower 48

CO₂ can be captured from the air

- Can be located at best storage sites (no pipelines needed!)
- Currently, operates best in hot places

Advanced farming uses CO₂

- Plants grow better with more CO₂
- Indoor farming can take advantage of CO₂ to increase production

Chemical plants can use CO₂

Concrete can use CO₂

- Adding CO₂ to concrete makes concrete stronger
- It combines with calcium in the concrete to make limestone within the concrete

Old oil & gas fields can use/store CO₂

- Existing infrastructure
- Geology tends to be well known
- Increase production

Deep saltwater aquifers can store CO₂

- Water is too salty to drink
- Fewer wells penetrate the caprock than in an oil or gas field
- More widely available than oil and gas fields

Basalt can store CO₂

• Carbon mixes with calcium to make limestone

Limestone

• Solid storage

Storage risks

Hou et al., 2014

Müller et al., 2021

Carbon Landscape in Kansas

Holubnyak et al., 2018

Pipelines can transport CO₂

Which route **minimizes**...

- Cost of materials
- Cost of labor
- Environmental impact
- Eminent Domain use

While maximizing...

- Sources
- Sinks

Potential New Carbon Dioxide Pipelines

- Northern Collector Trunk
 Southern Collector Trunk
- Permian Basin Trunk
 Wyoming Trunk

Edwards and Celia, 2018

Legislative issues around CCUS

- Primacy in Permitting
 - Currently a 2-3 year EPA process
- Eminent domain for pipelines
- Unitization
- Pore space ownership
- Long-term liability
- Monitoring

Critical Minerals

"Critical Minerals" Drive Modern Technology

Super-Alloys and Magnets

Energy Act of 2020 CM Definition

Critical minerals are defined as" essential to the economic or national security

- i. supply chain of which is vulnerable to disruption
- ii. serve an essential function in the manufacturing of a product

Does not include...

- i. fuel minerals
- ii. water, ice, snow
- iii. sand, gravel, stone, pumice, clay

US relies on imported Critical Minerals

NET IMPORT RELIANCE	7
BERYLLIUM	14%
MAGNESIUM	47%
GERMANIUM	50%
LITHIUM	50%
TUNGSTEN	50%
ZIRCONIUM	50%
ALUMINUM	61%
PLATINUM-GROUP METALS	68%
CHROMIUM	69%
COBALT	72%
TIN	75%
BARITE	75%
TELLURIUM	75%
RHENIUM	80%
ANTIMONY	85%
TITANIUM	91%

Alloying agent in aerospace and defense	
Furnace linings for manufacturing steel	
Fiber optics, night vision applications	
Batteries	
Used in wear-resistant metals	
High-temperature ceramics production	
Used in almost all sectors of the economy	
Catalytic agents	
Stainless steel, other alloys	
Rechargeable batteries, superalloys	
Coatings and alloys for steel	
Cement and petroleum industries	
Steelmaking, solar cells	
Lead-free gasoline, superalloys	
Batteries, flame retardants	
White pigment, metal alloys	

92%
96%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

0	white pigment, metai alloys
6	Fertilizer
6.	Used in medical and atomic research
%	Used for titanium alloys
%	Used in research and development
%	Aluminum manufacturing, gasoline, uranium fuel
%	Integrated circuits, optical devices (e.g. LEDs)
196	Lubricants, batteries, fuel cells
196	LCD screens
1%	Steelmaking
%	Steel alloys
%	Batteries, electronics
%	Research and development in electronics
%	Alloys, fuel cells
%	Pyrotechnics, ceramic magnets
196	Electronic components (e.g. capacitors)

DOE CoreCM Initiative

Funding Opportunity Announcement (FOA) Number: DE-FOA-0002364 FOA Type: Modification 000002 CFDA Number: 81.089

Legislative issues around Critical Minerals

• Permitting new mines, reopening old ones

Water usage

- Recycling
 - Legacy mining wastes
 - Electronics waste

Latin Lesson Time

For more information, contact your State Geologist!

Summary

- Current energy transition is one of many the industry has (and will) experience
- Its major parts are:
 - Hydrogen Economy
 - Energy Storage
 - Carbon Capture/Use/Storage
 - Critical Minerals
- It's not scary, it's opportunity!

